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Abstract

In this experiment we explore the concept of geometrical-phase, which is
also known as the Berry-phase, being induced on thermal neutrons in a polari-
metric setup. In 1984 M. V. Berry published his influential paper, in which
he described the cyclic evolution of the systems under special (adiabatic)
conditions, in which an additional phase factor, in addition to the dynami-
cal phase factor, arises. The geometric phase, commonly said, arises from a
global change of the quantum system, without any local changes. In general,
the measurement of the phase of the system is not a trivial task, and accord-
ingly, in the case of the geometrical phases, it is not possible to detect these
phases in a direct measurement. The only way to detect the geometrical phase
is using an interferometer. In this experiment we are working with thermal
neutrons, which are generated from a TRIGA-reactor, and use a Ramsey In-
terferometer, realized through a spin-measurement in a neutron-polarimeter,
to detect these globally induced geometrical phases, interferometrically.
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1 Introduction

1.1 Background and the Aim of the Experiment

Neutrons are massive particles that have no charge (consisting of two up-quarks
and two downs-quarks, 2

3
e− + 2(−1

3
)e− = 0), with a mass of m = 1.675× 10−27kg.

A free neutron has a lifetime of τ = 889.1± 1.8, after which it decay into a proton,
an electron and an anti-neutrino (β−-decay):

n −→ p+ + e− + υe + 0.78 MeV (1)

Neutrons have a spin of 1
2

with the magnetic dipole moment of −1.913µNus, where
µNus is the nuclear magnetic moment, and they are classified according to the
strength of their kinetic energy, in the following way: ≤ 10−5eV =ultra-cold,
10−5 − 10−3eV=cold, 10−3 − 0, 5eV=thermal, ≥ 0, 5eV=hot.

Due to their neutral-charge, the weakness of their interaction, and the depth
of their penetration, neutrons are very suitable for radiography, since they pass
through condensed matter even with low energies, and therefore they provide a
good tool for non-destructive material investigation. Also, due to the fact that the
neutrons posses a magnetic dipole-moment, have a mass, and are in the nucleus,
they are subject to all four fundamental forces.

In this experiment, we use thermal neutrons in order to measure their geomet-
rical/topological phase, using an experimental setup called a neutron polarimeter.
Geometrical phase, also know as the Berry-phase, is a phase-shift acquired due to the
geometrical properties of the parameter space of the Hamiltonian, when the system
is subject to the cyclic adiabatic processes. It is the nature of this geometrical phase,
that it cannot be measured directly, and therefore using the neutron-polarimeter,
we will measure these phases interferometrically. In doing so, we will explore the
theoretical predictions that are relevant for this type of phase measurements, such
as the behaviour of the geometrical phase with respect to the single, parallel, or
opposite rotations of the DC-coils, which induce the geometrical phase. We will
also study the effect of different factors, on the quality of our measurements, and
the effectiveness of the induction of the geometrical phases through the rotation of
the DC-coils. These effects include the orientation and the spatial-adjustment of
the DC-coils, and the flipping ratio of these coils, the period of the oscillation of the
measurements, and the distance of the path of the neutron beam from the rotation
axis of the DC-coils.

2 Theory

2.1 Larmor Precession of Neutrons in a Magnetic Field

For a free propagating Neutron which is interacting with a magnetic field
−→
B (−→r , t),

which excerpts a Torque of Γ = −→µ ×
−→
B = γ

−→
J ×
−→
B , the non-relativistic Schrödinger

equation is defined by the so-called Pauli-Equation:

ĤΨ(−→r , t) =

(
− h̄

2m

−→
∇2 − µ−→σ

−→
B (−→r , t)

)
Ψ(−→r , t) = ih̄

∂

∂t
Ψ(−→r , t) (2)
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with m and µ being the mass and the magnetic dipole-moment of the neutron,
and the −→σ , the Pauli -operators. The solution to this equation is the following
wave-function, in the form of

Ψ(−→r , t) =

(
Ψ+(−→r , t)
Ψ−(−→r , t)

)
= φ(−→r , t)|S〉 (3)

where φ(−→r , t) is the spatial component and the |S〉, the spin-component of the
wave-function.

|S〉 = cos
θ

2
| ⇑〉+ eiϕsin

θ

2
| ⇓〉 (4)

The illustration of the |S〉 which normally only represents a two-level quantum
system, could be realized using the Bloch Sphere. Furthermore in the presence of
an static magnetic field, the polarization-vector of the neutron, P = 〈S|−→σ |S〉, starts
to rotate, for which the equation of motion is given by the following expression, the
Bloch equation, as it could be seen in the next figure:

d
−→
P

dt
=
−→
P × γ

−→
B (5)

where γ = 2µ/h̄ is the gyromagnetic ratio, and the polarization-vector shows a

precession around the external magnetic field
−→
B with the Larmor-frequency ωL =

|2µB/h̄|. Figure-[1] illustrates these ideas in geometrical way:

Figure 1: Left: The Bloch-sphere for the illustration of the polarization-vector of

the Neutron. Right (center): The rotation of the polarization-vector
−→
B under the

influence of an external static magnetic field
−→
P .1

The Larmor-precession angle, ωLτ , depends solely on two factors: 1- The strength

of the applied magnetic field
−→
B , since the Larmor frequency ωL = −γB (with γ

as the gyromagnetic ratio). 2- The propagation time through the magnetic field τ .
One way to realize such a rotation is by DC spin-rotators: a set of coils wrapped
around a frame, which induces a 2D static magnetic field in x-, and z-direction.
A combination of two of these spin-rotators with an applied phase-shift, with the

1Source: Assistance Prof. Yuji Hasegawa, Dr.Stephan Sponar Quantenpraktikum: Topological
Phase Effect in Neutron Optics, Sommersemester 2014, TU Wien.
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spin-rotators acting as π/2-pulse, is referred to in atomic physics as Ramsey In-
terferometer, which is realized as a polarimeter in Neutron optics. When the spin
component of the state-vector of the Neutron goes through the first π/2-rotator, a
superposition-state is created from the initial state |Ψi〉 = | ⇑〉.

|Ψi〉
π/2 |Ψ′〉 = 1/

√
2(| ⇑〉+ | ⇓〉) (6)

Before the neutron goes through the second π/2 rotator, a phase shift φ is applied
using the change of position of the second π/2-rotator (DC4) along the y-axis.
Therefore we have a final state of:

|Ψ′〉π/2 |Ψ”〉 = 1/
√

2(e−iφ/2| ⇑〉+ eiφ/2| ⇓〉) ≡ 1√
2

(| ⇑〉+ eiφ| ⇓〉) (7)

With this superposition state, the probability of measurement of the final state in
each of the states | ⇑〉 or | ⇓〉, is given by the expression: P⇑,⇓ = 1/2(1 ± cos(φ)).
This polarimetric technique, which is called Ramsey Interfermetry in the case of
atomic systems, has the advantage of insensitivity to environmental, mechanical or
thermal disturbances, in comparison to Mach-Zehnder Interferometer, resulting in
higher phase stability.

2.2 Berry/Geometrical Phase

The discovery and the understanding of the phase accumulation due to geomet-
rical orientation of the state-vector, is mostly due to the work published by M. V.
Berry in 1984, which considered the cyclic evolution of the systems under adiabatic
conditions. The significance of this work lies in the fact that it showed the gauge
invariance of this phase, which could not be neglected. With that, Berry published
in his work that there was an additional phase other than the dynamical one: the
geometrical phase.

In order to derive a relatively general argument for the Berry-phase, from which
we can apply the expression to our system, we need to consider a quantum system
which depends on a multidimensional parameter R parametrizing the Hamiltonian
of the system. Therefore the time evolution of the system is defined by the following
Schrödinger equation:

H[R(t)]|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 (8)

The choice of basis for the solution of the equation remains arbitrary, therefore
we choose a basis such that the eigenstates are also function of the environments-
parameter R(t). With that the eigenvalue problem take the following form:

H[R(t)]|n(R(t)〉 = En[R(t)]|n(R(t))〉 (9)

we suppose that the spectrum of the Hamiltonian is discrete and also that the
environment and R(t) are varied adiabatically: Adiabatical variation is much slower
than the time scale of system during which the system evolves. If the system start
in the n-th eigenstate: |ψ(0)〉 = |n(R(0))〉. Therefore, according to the adiabatic
theorem the system remains in the n-th eigenstate, with the exception of a phase-
shift (φ). However the adiabatic theorem does not limit this phase-shift to the
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dynamical phase, which is accumulated due to the evolution of the system according
to its Hamiltonian:

|ψ(t)〉 = eiφn|n(R(t))〉, φn(t) = θn(t) + γn(t) (10)

where φ is the total phase-shift, θn(t) = −1/h̄
∫ t
0
H(t′)dt′ = −1/h̄

∫ t
0
En(t′)dt′ the

dynamical phase, and γn(t), the Berry (geometrical)-phase. If we insert the equa-
tions in (10) into the Schrödinger equation we can determine this additional phase
(R = R(t)):

∂

∂t
|n(R)〉+ i

d

dt
γn(t)|n(R)〉 = 0

d

dt
γn(t) = i〈n(R)| ∂

∂t
|n(R)〉

d

dt
γn(t) = i〈n(R)|∇R|n(R)〉dR

dt

(11)

which results in:

γn(t) = i

∫ Rf

Ri

〈n(R)|∇R|n(R)〉dR (12)

for a cyclic evolution around a closed path C in a time-frame of T such that R(0) =
R(T ) the Berry phase then is given by the following integral:

γn(C) = i

∮
C

〈n(R)|∇R|n(R)〉dR (13)

Some of the characteristics of the Berry-phase however, are important to note.
In his original paper [4], Berry mentions that ”this circuit-dependent” phase-factor
can be observed interferometrically , if ”the cycled sub-system is recombined with
another system, which was separated from it at an earlier time, whose Hamiltonian
was kept constant”. Therefore this recombination is a requirement for the observa-
tion of this phase-factor, in addition to the cyclic evolution of the sub-system under
observation. In general however, the Berry-phase is an example of the mathemati-
cal notion, which is called Holonomy. The holonomy of a connection in differential
geometry, on a smooth manifold, is a measure of the extent to which a parallel trans-
port around a closed loop fails to preserve the geometrical data being transported.
It is therefore a geometrical consequence of the curvature of the connection. The
most common forms of holonomy, which are for connections possessing some kind of
symmetry, are each identified with a Lie group i.e. the holonomy-group. In the case
of Berry-phase, due to broad and unifying implications of the gauge symmetry, the
topological and geometrical approach to identifying this phase-factor is therefore
the more effective approach, compared to trying to solve the equations of motion
using the Schrödinger equation.

2.3 Example of Spin-1
2 particle and Polarimetric Measure-

ment

Consider a spin-1
2

particle that moves in an adiabatically rotating magnetic field
given by the:

−→
B (t) = B0

 sinθcos(ωt)
sinθsin(ωt)
cosθ

 (14)
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The Hamiltonian and the eigenvalue of this system is given by the following equa-
tion:

H(t) = µ
−→
B · −→σ , H(t) = µB0

(
cosθ e−iωtsinθ
eiωtsinθ − cosθ

)
(15)

⇒ H(t)|n(t)〉 = En|n(t)〉 ⇒ E± = ±µB0, µ =
1

2

e

m
h̄ (16)

|n+(t)〉 =

(
cos θ

2

eiωtsin θ
2

)
, |n−(t)〉 =

(
−sin θ

2

eiωtcos θ
2

)
(17)

These eigenstates could be set as spin-up |n+(t)〉 = | ⇓−→
B (t)
〉 and spin-down |n−(t)〉 =

| ⇑−→
B (t)
〉 with respect to the

−→
B (t)-direction. In figure-[2], the ideas of the calculation

of the solid-angle Ω in two different situations, movement over the geodesics and
the equator, and the movement due to a static magnetic field, along with the polar
angle θ and φ are illustrated (the angle φ = ωt):

Figure 2: Left: The surface angle Ω due to movement of spin-vector along the
geodesic and the equator. Right (center): The rotation of the spin-vector of spin-1

2

particle in the presence of an adiabatically rotating magnetic field
−→
B (t).2

Now we need to calculate the gradient with respect to the parameter-space,
which is spanned by the magnetic field B(t). Therefore we use the gradient in the
polar coordinates:

∇|n±(t)〉 =
∂

∂r
|n±(t)〉r̂ +

1

r

∂

∂θ
|n±(t)〉θ̂ +

1

rsinθ

∂

∂φ
|n±(t)〉φ̂ (18)

which results in the following expressions:

∇|n+(t)〉 =
1

r

(
−1

2
sin θ

2
1
2
eiωtcos θ

2

)
θ̂ +

1

rsinθ

(
0

ieiωtsin θ
2

)
φ̂

∇|n−(t)〉 =
1

r

(
−1

2
cos θ

2

−1
2
eiωtsin θ

2

)
θ̂ +

1

rsinθ

(
0

ieiωtcos θ
2

)
φ̂

(19)

2Sources (Figures): Left: Assistance Prof. Yuji Hasegawa, Dr.Stephan Sponar Quantenprak-
tikum: Topological Phase Effect in Neutron Optics, Sommersemester 2014, TU Wien.
Right (and Center): Katharina Durstberger: Geometric Phases Quantum Theory-Diplomarbeit,
Januar 2002, Universität Wien.
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If we then take the scalar product 〈n|:

〈n+|∇|n+〉 = i
sin2

(
θ
2

)
rsinθ

φ̂ , 〈n−|∇|n−〉 = i
cos2

(
θ
2

)
rsinθ

φ̂ (20)

The integration of the above expectation values over the closed curve C, while
r = const. θ = const. φ ∈ [0, 2π] yields:∮

C

〈n±|∇|n±〉rsinθdφφ̂ = iπ(1∓ cosθ) (21)

Therefore the Berry phase of the equation (12) has the following form for the spin-1
2

particle in an adiabatically moving external magnetic field:

γ± = −π(1∓ cosθ) (22)

which in terms if the solid angle Ω =
∫ 2π

0
(1− cosθ(φ))dφ would simply be written

as.

γ±(C) = ∓1

2
Ω(C) (23)

In the case of neutrons in our experiment, however the Berry phase is generated
using spin-flippers, i.e. DC coils which induce a magnetic field in specific direction
which rotate the polarization-vectors 180° about the y-axis. If we were to char-
acterize these spin-rotators, using the operator-formalism, they would simply be
elements of SU(2)-group:

U(β) = exp

(
−i
−→σ
−→
β

2

)
= 1cos

(
β

2

)
− i−→σ β̂sin

(
β

2

)
(24)

with −→σ the as the Pauli-operators, β the angle from the Larmor precession, and β̂
the axis of rotation. Therefore if the initial-state | ⇑〉z after the first spin flip β1 = π
and the second spin flip β2, we have the following final state:

|ψfinal〉 = U(β2) · |ψ′〉 = U(β2) · (−icosβ1 + sinβ1)| ⇓〉z = −ei(β1−β2)| ⇑〉z (25)

= ei(β1−β2+π)| ⇑〉z = eiγ| ⇑〉z
Therefore the geometric (Berry) phase γ = β1 − β2 + π. As mentioned before
however, this phase cannot be measured using a direct measurement technique(i.e.
the expectation value of an observable), as the expectation value of the Pauli-spin
matrices result in:

〈⇑ |z−→σ | ⇑〉z = 〈⇑ |z(−eiγ)−→σ (−e−iγ)| ⇑〉z = (0, 0, 1)T (26)

that is why in order to measure this phase an interferometric/polarimetric setup
is required. Since our setup in this experiment is of the polarimetric type, one
needs to also keep in mind that the our reference state | ⇑〉z also accumulates a
geometric phase after the first π/2-rotation. Therefore the total geometric (Berry)
phase measured in the polarimetric setup of our experiment amounts to:

γ = γ↑ − γ↓ = 2(β1 − β2) (27)
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3 Experiment

3.1 Experimental Setup

3.1.1 Neutron Source and the Monochromator

The neutrons used in this experiments, which are generated in a 235U Fission
within the TRIGA-reactor, are thermal neutrons with 25meV -energy, as they are in
an equilibrium with the moderator material (i.e. water). The neutron-beam, are exit
through the tangential beam tube which has a lower Gamma-radiation compared to
the direct beam tube. The monochromator installed at this beam tube, reflects the
neutrons with 3 different wavelengths, 1.7Å, 2Å, 2.7Å. using mosaic crystal made of
pyrolytic graphite. The setup is installed on the 1.7Å beam-line with the Bragg angle
of 28.5°. The figure-[3] illustrates the configuration of the monochromator on the
tangential beam tube of the reactor, from which the beams of different wavelengths
scatter with different angles:

Figure 3: the details of the monochromator setup at the tangential beam tube of
the reactor, and the resulting neutron beams of different wavelengths.3

3.1.2 The Polarimenter and its Components

The setup consists of two filtering devices, the polarizer, and the analyzer, one
at upstream and the other one at down-stream, which act as spin-filters. These de-
vices are made up of different layers of different coherent scattering length. There
is transmission and also the reflection in percentage of the entire incident beam.
The use of alternating magnetic and non-magnetic medium, would require taking
into consideration, not only the nuclear scattering length, but also the magnetic
scattering length. This can consequently be used for polarization of the beam. The
rule for the transmission is that if the sum of the nuclear scattering length and the

3Sources: Assistance Prof. Yuji Hasegawa, Dr.Stephan Sponar Quantenpraktikum: Topological
Phase Effect in Neutron Optics, Sommersemester 2014, TU Wien.
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magnetic length of one spin component (i.e. | ⇓〉z) equal the scattering length of
the non-magnetic substance, then this spin component will be transmitted. This
construction, which uses a magnetic field, and is used either as polarizer or the
analyzer, is known as the supermirror.

Between the two devices (the polarizer and the analyzer) at the beginning and
the end of the experimental setup, a uniform magnetic field is applied, which is
pointing in the |Z+〉-direction, and also four DC-coils as spin-rotators, DC1-DC4.
The polarized neutrons, which are in | ⇑〉z-eigenstate, are guided through the setup,
throughout which they remain under the influence of the guide field B0, and go
through each four of these DC-coils. The first and the last DC-coils, DC1 and DC4
are π/2-rotators, which create a superposition state 1√

2
(| ⇑〉z+| ⇓〉z) out of the initial

state | ⇑〉z, and vice versa. The DC-coils in between, DC2, and DC3 ,are rotators
that induce a spin flip (π-rotator) about an axis in the xy-plane, which make the

angles β̂1 and β̂2 with the y-axis. These are the angles from which the geometric
phase originates, however the rotation-angles carried out by these DC-coils are π-
rotations. All four DC-coils are adjustable through rotations around x− and the
z−axes, and the DC4 also slides along the y-axis. This configuration enables us
to measure the geometric phase induced by the DC2, DC3-coils interferometrically,
without which the setup would be an empty polarimeter. The schematic sketch of
the setup is illustrated in figure-[4]:

Figure 4: The experimental setup for polarimetric detection of the Berry phase in
polarized neutrons flying through uniform magnetic field.4

The uniform magnetic guide field, which is applied throughout the experimental
setup is in a Helmholtz configuration pointing away from the floor of the setup in
the +z-direction. The field is applied in order to maintain the polarization of the
photons, and is tuned at ≈ 12 Gauss = 1.2 mT . The magnetic field induced by the
DC-coils in +z-direction, are applied in conjunction with the guide field in order to
compensate the uniform field, where there is non-uniformity. The magnetic field in
the x-direction, induced by the DC-coils work independent from the guide field and
are orthogonal to the direction of the guide field. However, they are adjusted with
respect to the strength of the guide field B0, in order to flip the maximum number
of neutrons and maintain a prefect Larmor precession throughout the setup. The

4Sources: Assistance Prof. Yuji Hasegawa, Dr.Stephan Sponar Quantenpraktikum: Topological
Phase Effect in Neutron Optics, Sommersemester 2014, TU Wien.
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manual control and the scan of the DC-coils using the stepper-motors, plus the
reading of the count rates are carried out in LabView program in a PC.

3.2 Results

3.2.1 Adjustment of the Coils

In the first step of the experiment, the the correct flipping current for the DC-
coils must be found so that the flipping ratio would correspond to the ideal ratios
defined by the rotation angles of the DC-rotators, namely π/2 and π. Since DC-2
is supposed to perform a π-flip, in order to increase the flip-ratio (i.e. the number
of π-flips performed on the incoming neutrons divided by the total number of neu-
trons), the coil must be parallel to its x-axis. In order to detect and correct any
unevenness along the x-axis, the magnetic field along the x-direction, Bx, must be
varied, to observe the intensity oscillation with the strength of the magnetic field.
A perfectly symmetric coil would have an equal minima about the zero-point, which
would then perform a perfect π-flip.

The goal is to adjust the DC2-coil so that the tilt angle ρ < ±1° would be
achieved. In order to achieve this evenness however, the magnetic field in the z-
direction induced by the DC-coil must be varied to compensate for the guide field−→
B = B0 · ẑ. For the optimization of the flip ratio DC-current along the x-axis was
measured at 2.701 A, and the amount of current corresponding to the π-flip would
be chosen, from the minima of the intensity. Afterwards a Bz-scan is performed for
DC-2 in order to know how much to compensate for the guide field in the z-direction.
For this purpose also the current corresponding to the minimum count-rate must
be selected and set, so that the coil would be even along the x-axis, through the
compensation of the z-direction magnetic field induced by the DC-coil. Figure-[5]
illustrate the first Bx-scan and the Bz-scan of the DC2-coil:

Figure 5: Left: DC2-Bx scan after adjusting the x-axis current for ρ < ±1 with
sinusoidal Fit. Right: DC2-Bz scan after choosing the current for π-flip from the
first Bx scan.

Now despite the adjustment along the x-axis, there is a slight difference between
the minima of the Bx-scan curve. Therefore we proceed to the Bz-scan, which we
then fit with a Gaussian and a polynomial fit to determine the current corresponding
to the minimum counts. Notice that the polynomial fit is slightly out of shape
compared to the Gaussian-fit. Therefore according the Gaussian fit the current for
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the minimal Bz-counts amounts to 341.02± 2.49 mA. Following this scan another
Bx-scan is performed to determine the best value for π-flip, which is illustrated in
the following figure:

Figure 6: Left: The second DC2-Bx scan after having performed a Bz-scan. Right:
The comparison of the first and the second DC2-Bx-scan.

After the second Bx-scan, it is noticeable that the curve is more symmetric, and
is evenly distributed range of the current. The other factor that has changed from
the first Bx-scan is the flipping ratio defined as R = Imax/Imin. According to the
statistic of the curves the following flipping ratios have been calculated:

RBx(1) =
8815

827
= 10.65 , RBx(2) =

8542

320
= 26.69 (28)

For the Bx-current corresponding to the π-flip of the DC1, and DC4, and π/2-flip of
the DC2 and DC3, which are to be read from the minima of the Bx-scan and the π/2
distance from the minima, the following values are calculated from the sinusoidal
fit:

I(π)(DC1, 4) = 1312.91± 3.50 mA , I(π/2)(DC2, 3) = 659.62± 3.20 mA (29)

The values of π/2-flip for DC1, and DC4, and accordingly π-flip for DC2, and DC3
were set equally, due to the fact that the individual scan for each set of these coils,
was not carried out, and the only DC-coil which was scanned for adjustment was
DC2. Normally these values differ slightly between DC1-DC4, and DC2-DC3

The above errors were calculated based on the fit-errors using the Gaussian error
propagation formula:

∆I =

√
(
∂I

∂x
)2 · (∆x)2 + (

∂I

∂y
)2 · (∆y)2

3.2.2 Measurement of the Geometrical Phase.

For the first measurement, which are performed for single coils rotations (β1 =
0, β2 = −10, 0, 10), the DC4 is translated along the y-axis, which is the flight-
direction for neutrons in order to adjust the count rate which in turn adds an
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additional phase shift. The figure-[7] illustrates the intensity oscillations as a result
of DC4-translations along the y-axis, without any geometrical phase:

Figure 7: The DC4-(y)-translation intensity oscillation, causing the additional phase
shift in addition to the geometrical phase.

The phase shift of the sinusoidal fit in the above curve is φ ≈ 0.37 rad = 21.2°. As it
will be seen in the next curves throughout the figures, this amount was indeed added
to the geometrical phase that was accumulated, by the neutrons. In figure-[8] the
plots of intensity vs. position for the single rotations, i.e. β1 = 0°, β2 = −10°, 0°, 10°,
are illustrated:

Figure 8: The accumulated geometrical phase shift as a function of the β2 angle of
DC3, in single coil rotations.

As it could be seen, in the above angle-rotation regime, there is a phase shift as
a function of the β2, which will be better distinguishable in figure-[9]:
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Figure 9: Left: the collective plots of the intensity oscillations in single coil rotations.
Right: the linear fit of the geometrical phase shift (+90°) as a function of β2.

In the above three intensity plots the curve visibility was also calculated, and average
over the 3 curves, and eventually the phase shift was plotted as a function of the β2
and fitted linearly:

Vavg =

(
3∑
i=1

Imaxi − Imini

Imaxi + Imini

)
/3 = 92.07% , Slope(linear fit) = 1.21± 0.27

For a better estimation of the error, which flows into the measurement of the
geometrical phase-shift, the period of the oscillations also must be taken into ac-
count. The following value is the period of the oscillation for the (β1 = β2 = 0°)-
configurations:

(4.3837± 0.0095)× 106 steps

This oscillation period should have been fixed for other configurations as well. How-
ever, the period of oscillation varies in two other configuration of the above set in
the range of:

[(4.4319± 0.0088)− (4.392± 0.0097)]× 106 steps

With this range of values, the variations of the period of oscillations contribute to
the measurement errors. The exact amount of error however could not be estimated
trivially due to the difference of the oscillation-periods, however the amount of error
corresponding to this amount difference could bot be negligible.

Similarly the following set of plots illustrate the Intensity oscillation as a function
of position of the DC-coils for each of β2 in a parallel coil rotations i.e. β1 = β2 =
−10°, 0°, 10°:
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Figure 10: The accumulated geometrical phase shift as a function of the β2 angle
of DC3, in parallel coil rotations.

contrary to the previous case however, in parallel rotations the phase shift tends
to remain unchanged for any change of β2. The following plots also illustrate and
confirm this fact:

Figure 11: Left: the collective plots of the intensity oscillations in parallel coil
rotations. Right: the linear fit of the geometrical phase shift (+90°) as a function
of β2.

The following are the average visibility of the 3 curves, and the computed slope of
the linear fit of the phase shift, plotted as a function of the β2:

Vavg =

(
3∑
i=1

Imaxi − Imini

Imaxi + Imini

)
/3 = 91.8% , Slope(linear fit) = −0.29± 0.1

For the above set of rotations ([β1 = β2 = 10°]—[β1 = β2 = −10°]), the difference
between the period of oscillations ranges from:

[(4.4905± 0.0458)− (4.4132± 0.0012)]× 106 steps

With this range of variations, in the period of oscillations, the amount of error
caused by the variations would be considerable.
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And finally the following set of plots were prepared to illustrate the Intensity
oscillation as a function of position of the DC4-coil for β2 in a opposite coil rotations
i.e. β1 = −β2 = −10°, 0°, 10°:

Figure 12: The accumulated geometrical phase shift as a function of the β2 angle
of DC3, in opposite coil rotations.

In opposite coil rotation similar to the single coil rotation, the accumulated geomet-
rical phase tend to change with the β2-angle, however it turns out that the slope of
the linear fit i.e. the rate of the change of the phase with the change of the β2-angle
has increased:

Figure 13: Left: the collective plots of the intensity oscillations in opposite coil
rotations. Right: the linear fit of the geometrical phase shift (+90°) as a function
of β2.

And the following are the average visibility of the 3 curves, and the computed slope
of the linear fit of the phase shift, plotted as a function of the β2:

Vavg =

(
3∑
i=1

Imaxi − Imini

Imaxi + Imini

)
/3 = 90.66% , Slope(linear fit) = 2.466± 0.073
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Once again an estimation of the difference in the period of oscillations from
([−β1 = β2 = 10°]—[−β1 = β2 = −10°]) yields:

[(4.4385± 0.0007)− (4.3561± 0.0013)]× 106 steps

As we can see, in the case of the opposite rotations also, the difference between the
oscillation-periods are in a significant range from the value for the central configu-
ration β1 = β2 = 0°. This range of difference additionally, similar to the values for
single- and parallel rotations, would result in an error in the measurements of the
phase-shifts.

4 Conclusion & Perspective

In the adjustment part of the experiment, where the coils were to be adjusted
for the measurement of the geometrical phase, the processes carried out for DC2
seemingly increased the visibility and the flipping ratio of the coil. The unadjusted
coil had a flipping ratio of only ≈ 10, while after the adjustments the ratio was
increased to ≈ 27. However, in comparison to the sample performed in the experi-
ment’s manual, where a perfect phase shift is observed in a single coil rotation, the
optimized flipping ratio is ≈ 57. Therefore, we identify this relatively small flipping
ratio as one of the error sources.

Additionally, the variations in the period of oscillations, with respect to the cen-
tral angle configuration of β1 = β2 = 0°, are also a source of error, due to the fact
that all the angle settings left of the central configuration have a larger period of
oscillation that the central angle-setting β1 = β2 = 0°. This in turn reduces the
amount of phase-shift as a function of increasing-β2. In opposite rotation the right
side angle-setting −β1 = β2 = −10°, also has a smaller period, which additionally
causes a decrease in the phase-shift. Therefore, in total, the shift in the period of
oscillations contribute a considerable amount to the error in the measurement of
the geometrical phase-shift.

However, aside from the two factors mentioned above, the main source of error
in the measurement of the geometrical phase is considered to be the deviation of
the neutron beam-path from the axis of the rotations of the DC-coils. For a DC-coil
of 5 cm-length, the deviation of the beam-path is thought to be ≈ 6 mm from
the rotation-axis of the DC-coil. The applied magnetic field of the coils 15 Gauss,
together with the neutron velocity of 2 km/s, cause the path deviation to effec-
tively reduce the rotation-angles, by a significant amount. In the case of the single
rotations, in which the total manual rotation of the β2 must be 20°, the beam-path
deviation would effectively reduce this angle to ≈ 16 degree. That means that alone
the beam deviation has cause the slope of the linear fit in figure-[9] to be reduced
to 1.61 from the theoretically correct amount of 2.00. The rest of the reduction
in the slope is attributed to the other two error sources mentioned in the above
paragraph. Regarding the neutron beam-path deviation, figure-[14] is a graphical
illustration of the error estimation due to the distance between the beam-path and
the rotation-axis of the DC-coil:
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Figure 14: The illustration of the beam-path divergence, from the rotation-axis of
the DC-coil, and the estimation-principle of the error in the measurement of the
geometrical phase.

Finally with regard to the phase shift as a function of the β2, which is angle
between DC3 and DC4, all the above regimes demonstrate a agreement with the
theoretical predictions. Figure-[15] is once again a collective illustration of the phase
shifts:

Figure 15: the collective plots of phase shift (+90°) as a function of β2 in (from left)
single- , parallel -, and opposite-rotations.

According to the theory, in a single rotation regime the total geometrical phase is a
function of β2 according to the following relation: γ = 2(β1 − β2) β1 = 0° =⇒ γ =
2β2. Therefore the slope of the linear fit in the single coil rotation phase shifts has to
be ≈ 2, which is also the case in the example within the experiment’s manual. Here
however our measured slope only amounted to ≈ 1.21 with a margin of error, and
the reason for that can only be traced back to the small flipping ratio compared to
≈ 57. This in turn could be due to the strength of the magnets in DC-coils, which
may have varied in time in comparison to the time of the previous measurements
included in the experiment’s manual

A similar statement could be made for the cases of the opposite and parallel
rotations, in which, in one of rotation schemes, parallel rotations, the phase shift
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is expected to remain unchanged: γ = 2(β2 − β2) = 0°. Our measurements in this
case show a slight phase shift, where the slope of the linear fit is only ≈ −0.29.
Therefore we conclude one again the agreement of the measurements with the the-
oretical predictions. Also in the case of the opposite rotations, where the expected
phase shift is supposed to change with the rotation angle β2, with the ratio of 4:
γ = 2(β2 + β2) = 4β2, the measured slope doubled compared to the single rotations
case with ≈ 2.47. Therefore based on these measurements, taking into account the
accumulated error caused by the aforementioned sources, we can conclude that the
experimental results agree with the theoretical prediction about the accumulated
Berry(geometrical) phase, in a neutron-polarimetric setup, induced by the probe
system of DC2 and DC3.
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